Multi-Camera and Structured-Light Vision System (MSVS) for Dynamic High-Accuracy 3D Measurements of Railway Tunnels

نویسندگان

  • Dong Zhan
  • Long Yu
  • Jian Xiao
  • Tanglong Chen
چکیده

Railway tunnel 3D clearance inspection is critical to guaranteeing railway operation safety. However, it is a challenge to inspect railway tunnel 3D clearance using a vision system, because both the spatial range and field of view (FOV) of such measurements are quite large. This paper summarizes our work on dynamic railway tunnel 3D clearance inspection based on a multi-camera and structured-light vision system (MSVS). First, the configuration of the MSVS is described. Then, the global calibration for the MSVS is discussed in detail. The onboard vision system is mounted on a dedicated vehicle and is expected to suffer from multiple degrees of freedom vibrations brought about by the running vehicle. Any small vibration can result in substantial measurement errors. In order to overcome this problem, a vehicle motion deviation rectifying method is investigated. Experiments using the vision inspection system are conducted with satisfactory online measurement results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Camera Arrangement in Visual 3D Systems using Iso-disparity Model to Enhance Depth Estimation Accuracy

In this paper we address the problem of automatic arrangement of cameras in a 3D system to enhance the performance of depth acquisition procedure. Lacking ground truth or a priori information, a measure of uncertainty is required to assess the quality of reconstruction. The mathematical model of iso-disparity surfaces provides an efficient way to estimate the depth estimation uncertainty which ...

متن کامل

Accurate 3D measurement using a structured light system

This paper discusses a method for obtaining accurate 3D measurements using a temporally encoded structured light system. An objective of the work was to have a balance in the accuracy of all components in the system. This was achieved by including lens distortion in the models for both the camera and projector which comprise the structured light system. In addition, substripe estimation was use...

متن کامل

A 3D Computer Vision System in Radiotherapy Patient Setup

An approach to quantitatively determine patient surface contours as part of an augmented reality (AR) system for patient position and posture correction was developed. Quantitative evaluation of the accuracy of patient positioning and posture correction requires the knowledge of coordinates of the patient contour. The system developed uses the surface contours from the planning CT data as the r...

متن کامل

Calibration method for line-structured light multi-vision sensor based on combined target

Calibration is one of the most important technologies for line-structured light vision sensor. The existing calibration methods depend on special calibration equipments, whose accuracy determines the calibration accuracy. It is difficult to meet the requirements of universality and field calibration with those methods. In order to solve these problems, a new calibration method based on the comb...

متن کامل

Accepted for Publication Image and Vision Computing 1997 Accurate 3d Measurement Using a Structured Light System

This paper discusses a method for obtaining accurate 3D measurements using a temporally encoded structured light system. An objective of the work was to have a balance in the accuracy of all components in the system. This was achieved by including lens distortion in the models for both the camera and projector which comprise the structured light system. In addition, substripe estimation was use...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2015